1,271 research outputs found

    Survey of the ATLAS Pixel Detector Components

    Get PDF
    This document provides a description of the survey performed on different components of the ATLAS Pixel Detector at different stages of its assembly

    Extrapolation of the LTE data for regional prediction of crop production and agro-environmental impacts in the Czech Republic with the EPIC-based modelling system

    Get PDF
    The long-term crop trials (LTE) provide valuable insights into functioning of the crop systems under variety of crop management strategies. In particular, those field operations which in long run affect the soil organic carbon balance might be of an importance for the climate change impacts oriented research. Bonded strongly to the local site conditions, LTEs provide spatially limited information, not fully reflecting the needs of the large-scale inventories covering countries or big regions. Representing LTEs with a process-based model via locally calibrated model parameters and data, and subsequent upscaling of the model with regional data on climate, terrain, soil, and land use, provides a possible way for LTEs extrapolation to wider geographical domains. As a follow-up to the earlier work on formalising LTE records from several sites in Czechia with the EPIC model, the simulation infrastructure (EPIC-IIASA (CZ)) has been created for regional predictions of crop production and its agro-environmental impacts over the whole territory of Czech Republic (CZ). Conceptually, the EPIC-IIASA (CZ) has been designed based on the EPIC-IIASA global gridded crop modelling system. A set of 977 spatial simulation units (or typical fields, > 1 ha each), which represent a unique combination of an administrative unit (level LAU1), climate region, and soil region, has been compiled using CZ national data. Each simulation unit has been used for linking spatially explicit input data on i) climate, ii) site, iii) soil properties, and iv) crop management to the process-based model EPIC. As an output, various agro-environmental variables may be acquired and visualized geographically. Initially, the spatial infrastructure worked with fixed sowing and harvesting dates across all CZ regions. In order to get the full potential of the EPIC-IIASA (CZ), a calibration with regional planting scenarios was done. Agronomically relevant planting-harvesting windows scenarios were assessed based on the published data (MOCA report), this specifically for traditional production areas in CZ (CZ_R01: Maize growing; CZ_R02: Potato growing; CZ_R03: Cereal growing; CZ_R04: Forage growing; CZ_R05: Sugar beet growing). Since there was not any yield data available for the LAU1 level administrative regions, published LAU1 estimates of the potential yields were used for validation of the EPIC-IIASA (CZ) simulated rainfed and nutrient-unlimited yields. Both absolute simulated yields and the percentage of reported potential yields were displayed geographically and spatial pattern of the simulated values evaluated. Furthermore, longterm average and inter-annual variability of simulated yields were compared to the available statistical data at the NUTS3 administrative level. To date, calibration and validation of two crops, spring barley and winter wheat were successfully performed. Other crops will be calibrated in the next step, so that representative crop rotations could be constructed and used in EPIC-IIASA (CZ) setup to properly approximate the prevailing regional cropping systems in the simulations. Such a completely calibrated and validated crop modelling system could serve as a powerful tool for extrapolating impacts of different crop management strategies, well explored with LTEs, over the larger areas, and hence, provide valuable evidence-based inputs for decision-making support at regional and national levels in CZ

    Impacts and Uncertainties of +2°C of Climate Change and Soil Degradation on European Crop Calorie Supply

    Get PDF
    Even if global warming is kept below +2°C, European agriculture will be significantly impacted. Soil degradation may amplify these impacts substantially and thus hamper crop production further. We quantify biophysical consequences and bracket uncertainty of +2°C warming on calories supply from ten major crops and vulnerability to soil degradation in Europe using crop modelling. The Environmental Policy Integrated Climate (EPIC) model together with regional climate projections from the European branch of the Coordinated Regional Downscaling Experiment (EURO-CORDEX) were used for this purpose. A robustly positive calorie yield change was estimated for the EU Member States except for some regions in Southern and South-Eastern Europe. The mean impacts range from +30 Gcal ha–1 in the north, through +25 and +20 Gcal ha–1 in Western and Eastern Europe, respectively, to +10 Gcal ha–1 in the south if soil degradation and heat impacts are not accounted for. Elevated CO2 and increased temperature are the dominant drivers of the simulated yield changes in high-input agricultural systems. The growth stimulus due to elevated CO2 may offset potentially negative yield impacts of temperature increase by +2°C in most of Europe. Soil degradation causes a calorie vulnerability ranging from 0 to 80 Gcal ha–1 due to insufficient compensation for nutrient depletion and this might undermine climate benefits in many regions, if not prevented by adaptation measures, especially in Eastern and North-Eastern Europe. Uncertainties due to future potentials for crop intensification are about two to fifty times higher than climate change impacts

    Surface plasmon resonance modulation in nanopatterned Au gratings by the insulator-metal transition in vanadium dioxide films

    Get PDF
    Correlated experimental and simulation studies on the modulation of Surface Plasmon Polaritons (SPP) in Au/VO2 bilayers are presented. The modification of the SPP wave vector by the thermallyinduced insulator-to-metal phase transition (IMT) in VO2 was investigated by measuring the optical reflectivity of the sample. Reflectivity changes are observed for VO2 when transitioning between the insulating and metallic states, enabling modulation of the SPP in the Au layer by the thermally induced IMT in the VO2 layer. Since the IMT can also be optically induced using ultrafast laser pulses, we postulate the viability of SPP ultrafast modulation for sensing or control. (C)2015 Optical Society of Americ

    Verifiable soil organic carbon modelling to facilitate regional reporting of cropland carbon change: A test case in the Czech Republic

    Get PDF
    Regional monitoring, reporting and verification of soil organic carbon change occurring in managed cropland are indispensable to support carbon-related policies. Rapidly evolving gridded agronomic models can facilitate these efforts throughout Europe. However, their performance in modelling soil carbon dynamics at regional scale is yet unexplored. Importantly, as such models are often driven by large-scale inputs, they need to be benchmarked against field experiments. We elucidate the level of detail that needs to be incorporated in gridded models to robustly estimate regional soil carbon dynamics in managed cropland, testing the approach for regions in the Czech Republic. We first calibrated the biogeochemical Environmental Policy Integrated Climate (EPIC) model against long-term experiments. Subsequently, we examined the EPIC model within a top-down gridded modelling framework constructed for European agricultural soils from Europe-wide datasets and regional land-use statistics. We explored the top-down, as opposed to a bottom-up, modelling approach for reporting agronomically relevant and verifiable soil carbon dynamics. In comparison with a no-input baseline, the regional EPIC model suggested soil carbon changes (~0.1–0.5 Mg C ha−1 y−1) consistent with empirical-based studies for all studied agricultural practices. However, inaccurate soil information, crop management inputs, or inappropriate model calibration may undermine regional modelling of cropland management effect on carbon since each of the three components carry uncertainty (~0.5–1.5 Mg C ha−1 y−1) that is substantially larger than the actual effect of agricultural practices relative to the no-input baseline. Besides, inaccurate soil data obtained from the background datasets biased the simulated carbon trends compared to observations, thus hampering the model's verifiability at the locations of field experiments. Encouragingly, the top-down agricultural management derived from regional land-use statistics proved suitable for the estimation of soil carbon dynamics consistently with actual field practices. Despite sensitivity to biophysical parameters, we found a robust scalability of the soil organic carbon routine for various climatic regions and soil types represented in the Czech experiments. The model performed better than the tier 1 methodology of the Intergovernmental Panel on Climate Change, which indicates a great potential for improved carbon change modelling over larger political regions

    Measured Effects of Surface Cloth Impressions on Polar Backscatter and Comparison with a Reflection Grating Model

    Get PDF
    Integrated polar backscatter has been shown to have potential applications to composites, especially for the detection of matrix cracking, delaminations, fiber waviness, fiber fracture, inclusions and porosity [1–11]. The method was attractive because it avoided several measurement limitations inherent to conventional pulse echo techniques. Polar backscatter, however, has not been without its disadvantages. It has been reported that surface texture introduces unwanted artifacts in images made using the polar backscatter method [12]. One suggested method to overcome this limitation was the use of stripable coatings, which are paints that approximately match the impedance of the composite surface and have the effect of physically “smoothing” the surface impressions away [13]. After ultrasonic testing, these paints can be removed, but this method entails additional part handling and increases the cost of production

    Orbiter LH2 Feedline Flowliner Cracking Problem

    Get PDF
    In May of 2002, three cracks were found in the downstream flowliner at the gimbal joint in the LH2 feedline at the interface with the Low Pressure Fuel Turbopump (LPFP) of Space Shuttle Main Engine (SSME) #1 of Orbiter OV-104. Subsequent inspections of the feedline flowliners in the other orbiters revealed the existence of 8 additional cracks. No cracks were found in the LO2 feedline flowliners. A solution to the cracking problem was developed and implemented on all orbiters. The solution included weld repair of all detectable cracks and the polishing of all slot edges to remove manufacturing discrepancies that could initiate new cracks. Using the results of a fracture mechanics analysis with a scatter factor of 4 on the predicted fatigue life, the orbiters were cleared for return to flight with a one-flight rationale requiring inspections after each flight. OV-104 flew mission STS-112 and OV-105 flew mission STS-113. The post-flight inspections did not find any cracks in the repaired flowliners. At the request of the Orbiter Program, the NESC conducted an assessment of the Orbiter LH2 Feedline Flowliner cracking problem with a team of subject matter experts from throughout NASA

    Search for W~1Z~2\widetilde{W}_1\widetilde{Z}_2 Production via Trilepton Final States in ppˉp\bar{p} collisions at s=1.8\sqrt{s}=1.8 TeV

    Full text link
    We have searched for associated production of the lightest chargino, W~1\widetilde{W}_1, and next-to-lightest neutralino, Z~2\widetilde{Z}_2, of the Minimal Supersymmetric Standard Model in ppˉp\bar{p} collisions at \mbox{s\sqrt{s} = 1.8 TeV} using the \D0 detector at the Fermilab Tevatron collider. Data corresponding to an integrated luminosity of 12.5±0.7\pm 0.7 \ipb were examined for events containing three isolated leptons. No evidence for W~1Z~2\widetilde{W}_1\widetilde{Z}_2 pair production was found. Limits on σ(W~1Z~2)\sigma(\widetilde{W}_1\widetilde{Z}_2)Br(W~1lνZ~1)(\widetilde{W}_1\to l\nu\widetilde{Z}_1)Br(Z~2llˉZ~1)(\widetilde{Z}_2\to l\bar{l}\widetilde{Z}_1) are presented.Comment: 17 pages (13 + 1 page table + 3 pages figures). 3 PostScript figures will follow in a UUEncoded, gzip'd, tar file. Text in LaTex format. Submitted to Physical Review Letters. Replace comments - Had to resumbmit version with EPSF directive

    Measurement of the WW Boson Mass

    Full text link
    A measurement of the mass of the WW boson is presented based on a sample of 5982 WeνW \rightarrow e \nu decays observed in ppp\overline{p} collisions at s\sqrt{s} = 1.8~TeV with the D\O\ detector during the 1992--1993 run. From a fit to the transverse mass spectrum, combined with measurements of the ZZ boson mass, the WW boson mass is measured to be MW=80.350±0.140(stat.)±0.165(syst.)±0.160(scale)GeV/c2M_W = 80.350 \pm 0.140 (stat.) \pm 0.165 (syst.) \pm 0.160 (scale) GeV/c^2.Comment: 12 pages, LaTex, style Revtex, including 3 postscript figures (submitted to PRL
    corecore